Definitions for Words Contained in the Educational Session,
“Hydrogeologic Concepts Related to Contaminant Transport”

Alluvium: loose soil or sediments, which has been eroded, reshaped by water in some form, and redeposited
in a non-marine setting; typically made up of a variety of materials such as sand, silt, and gravel

Anisotropy: the property of being anisotropic; having a different value when measured in different directions

Aquifer: a saturated geologic unit capable of transmitting significant quantities of water under ordinary
conditions

Aquitard: a saturated geologic unit capable of transmitting water in limited amounts under ordinary
conditions

Average Linear Velocity: (77) calculation for how fast water is moving through the pores of the rock

Carbonate Rock: sedimentary rocks composed primarily of carbonate materials

Confining Unit: a hydrogeologic unit of relatively impermeable material, bounding one or more aquifers

Contaminant Boundary: a boundary developed based on modeling studies of groundwater flow and

radionuclide transport; groundwater within this boundary may exceed the safety standards at some time
within 1,000 years; safety standard for tritium is 20,000 picocuries per liter

Curie (Ci): a unit of radioactivity equal to 3.7 x 10'° disintegrations per second
Darcy’s Law: fundamental law upon which all Nevada National Security Site (NNSS) flow models are based
Desorption: a process whereby a substance is released from or through a surface

Diffusion (Brownian Motion): random motion of particles suspended in a fluid resulting from their collision
with the quick atoms or molecules in the gas or liquid

Dissolution: a process by which matter in an original state become dissolved components, forming a solution
of the gas, liquid, or solid in the original solvent

Finnegan Inventory: a complete listing of radionuclides on the NNSS originating from underground nuclear

tests
Heterogeneity: the state of being heterogeneous (i.e., made up of parts that are different)

Hydraulic Conductivity (k): ease with which water passes through geologic material

Hydraulic Gradient (dh/dl): the difference in available energy (pressure and elevation) from one point to

another, it is a measure of the amount of energy available for moving water from one point to another

Hydraulic Head (h): the available energy at one point for moving groundwater; the sum of elevation and

pressure

Hydrosphere: the combined mass of water found on, under, and over the surface of a plant



Matrix Diffusion: movement of molecules or atoms from a region of high to low concentration

Maximum Contaminant Level (MCL): the legal threshold limit on the amount of a substance that is allowed in
public water systems under the Safe Drinking Water Act; standards set by the U.S. Environmental Protection

Agency

Mechanical Dispersion: the process whereby fluids are mechanically mixed during transport caused by velocity

variations at a microscopic level
Permeability: the measure of the ease with which a fluid can move through a porous rock

Porosity: measure of how much of a rock is open space; this space can be between grains or within cracks or
cavities of the rock

Precipitation: the process by which a solid is created from a solution

Radioactive Decay: process by which the nucleus of an unstable atom loses energy by emitting radiation,

including alpha particles, beta particles, and gamma rays
Sorption: physical and chemical process by which one substance becomes attached to another

Specific discharge: (v) volume of water moving through a unit volume of rock per time (a rate)

Tuff: a light, porous rock formed by consolidation of volcanic ash

Welded Tuff: a tuff deposit sufficiently thick and hot at the time of emplacement that the fragments soften
and come together to form a rock

Zeolites: a mineral composed primarily of aluminum, silica, and water. It forms as a weathering product of
volcanic tuff. Itis highly porous and often called a molecular sieve for its ability to trap and hold various
molecules.

Zeolitized Tuffs: a tuff that contains a high-percentage of zeolites.




. Science 11y At

Ed:rﬂdfatle' f%essmn forv A

JuI 2.0 2016 e

= ‘, - a7 ' " |
) ( e b . ~ =
; :
+ performance < cleanup <  closure www.em.doe.gov

Desert Research Institute




ENVIRONMENTAL MANAGEMENT I

Objectives

* Impart a greater understanding of basic hydrologic
concepts to members of the NSSAB

» Use a case study to demonstrate how basic hydrologic
concepts can be combined to predict key aspects of
contaminant transport

 Demonstrate how conceptual models can be revised
using new data
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COMPONENTS OF THE HYDROSPHERE

Hydrosphere

COMPONENTS OF THE HYDROSPHERE Else and Glaciers

Total volume of hydrosphere is
— 1.4 billion cubic kilometers.
& Groundwater constitutes 0.7% of that.

(Retrieved from http://www.britannica.com/science/hydrosphere)
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water table
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Primary Porosit
y y Secondary Porosity
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Matrix can also be

porous
Examples from Nevada National
Security Site (NNSS): Alluvium, Examples NNSS: Granite, Carbonate Aquifer,
Zeolitized Tuffs (10 — 55% Porosity) Lava Flow (<<0.1% — 10% Porosity)
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Impact of Porosity: Velocity
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Impact of Porosity: Storage
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Hydraulic Conductivity

» Ease with which water passes
through geologic material

 Many orders of magnitude

 Typical values for NNSS geologic
material

— Alluvium: 5* meters/day (m/d)
— Welded Tuff: 0.2 m/d
— Tuff Confining Unit: 0.00006 m/d

*1 meter equals 3.3 feet and
5 meters equals 16.4 feet
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Aquifers Versus Aguitards

Mapped trace of
Gass Peak thrust

undifferentiated
basin fill and
alluvial deposits &%

Aquifers
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Hydraulic Head !

High Elevation

High Pressure

« Heat flows from high

temperature to low — -—p
temperature

Low Pressure

e Electrical current flows
from high voltage to low

Low Elevation

voltage

« Water flows from high e Hydraulic head is the sum
hydraulic head to low of elevation and pressure
hydraulic head — Available energy for

moving groundwater

safety < performance <% cleanup <  closure www.em.doe. gov
Desert Research Institute  1278Fv16- 772012016 — Page 10

Log No. 2016-100




. =NVIRONMENTAL MANAGEMENT I

Hydraulic Gradient
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Density Driven Flow

* A helium balloon rises due to
the balloon being less dense
than the surrounding air

o Similarly, warm water is less
dense than cool water and
will rise in an otherwise still
column of fluid
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Geologic Composition Affects Flow Direction
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Darcy’s Law

« Fundamental law upon which all
NNSS flow models are based

e Calculates the amount of water moving
through the rock (Q) dh

e Depends on Q dl
— Permeability of the rock (K)

— Amount of energy available to push
the water through the rock (dh/dl)

— Size of area the water is flowing
through (A)
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Average Linear Velocity

- Velocity of water in rock is Q dh

fundamentally related to V=4 =%
Darcy’s equation
e Calculates how fast water is — 1 Q _ dh 1
. V= ——=/R— —
moving through the rock n A dl n

* ldentical to Darcy’s equation, T — —
parameters just moved around igey e— T
and porosity added

— High porosity (n) gives us low
velocity (V)

— Low porosity gives us high
velocit
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Groundwater Processes that Affect
Contaminant Transport

Differing speeds of groundwater Longer vs shorter paths
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Groundwater Processes that Affect
Contaminant Transport

(continued)
Diffusion (Brownian Motion) Matrix Diffusion
‘W.ﬁtw%"&.{ : ‘Wgw%
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Adapted from: Francisco
Esquembre, Fu-Kwun and Lookang

Matrix diffusion is really important for limiting
contaminant transport
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Chemical Processes that Affect
Contaminant Transport

Precipitation
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ENVIRONMENTAL MANAGEMENT

Chemical Processes that Affect

Contaminant Transport
(continued)

Dissolution
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Chemical Processes that Affect
Contaminant Transport

Sorption/Desorption* Radioactive Decay
_ . . . Activity after
Radioisotope | Half-Life | Finnegan Inventory (Ci) 1,000 years (Ci)
3H 12.32 40,700,000 1.5E-17
4c 5,730 2,830 2,508
*cl 301,000 616 615
Finnegan et al., (2016) — Inventory for all Corrective Action

Units Decay Corrected to September 30, 2012

H equals tritium

14
C equals carbon-14

6
Cl equals chlorine-36
Ci equals curie

1.5E-17 equals 0.000000000000000015

*Spreads, dilutes, and slows down contaminant movement
ENC M ERVIFORMCnial MaGRaGgement — 1 17 T\ —
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Conceptual Model

» A collection of concepts that explains observations

e Can use new
observations to test
conceptual model for
Internal consistency

e Can be used to guide
the development of a
numerical model
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Source: Navarro-Intera (2014)

Milk Shake Test weenes

TD 2758 m

Initial Conceptual “™ g
Model - ST e
« Milk Shake detonated € ) ]
in Frenchman Flatata = o

g
|

depth of 868 feet in

March 1968 2500
700 2,300
e Announced yield less
than 20 kilotons Hyerogeclgs Un o 2
[ | Alluvial aquifer F;c I ; f:’;ALE o
7 Lava-flow aquifer WP = Working point 6 = 00 (m)
TD = Total depth No vertical exaggeration

Cavity radius is calculated using the maximum of the announced
yield range in DOE/NV-209 (2015) and the equation in Pawloski (1999)
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Milk Shake Test

Initial

Contaminant

Boundary

ENVIRONMENTAL MANAGEMENT I
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Milk Shake Test
Model Evaluation

 Hydraulic Gradient — reanalyzed e T |
water level data 100}
« Continuity of Lava Flow Aquifer — o]
drilled and conducted surface ‘.. H=
magnetic geophysical surveys 5 o0 |
« Nature of Lava Flow Aquifer — fo
drilled and conducted aquifer gy
testing w00 | S
« Permeability of Lava Flow Aquifer

— conducted aquifer testing

Cavity radius is calculated using the maximum of the announced
yield range in DOE/NV-209 (2015) and the equation in Pawloski (1999)
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Milk Shake Test
Model Evaluation Results

« Hydraulic Gradient — refined
hydraulic gradient by a few degrees

« Lava Flow Aquifer more spatially
extensive than modeled

e Lava Flow Aquifer is actually
rubbleized and not a dense fractured
unit; acts more like a porous media
rather than a fractured media

» Hydraulic conductivity similar to what
was modeled
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Milk Shake Test
Forecasted Versus
Actual Results

Value Error MCL
Radionuclide
{pCi/L)

3H 112 04 20,000
“C 0.1413 0.0005 2,000
*BC| 3.37E-04 4 9E-06 700
9Te <0.00086 N/A 900
129) 2.5E-08 2.0E-07 1

#2 sigma detection limit is 0.8 pCi/L.

Cl = Chlorine N/A = Not applicable
| =lodine Te = Technetium

Safe Drinking Water Act (SDWA) maximum
contaminant level (MCL) for tritium is
20,000 picocuries per liter (pCi/L)

Probability of Exceeding SDWA at 50 Years
(Red line = 95% and Yellow line = 5%)
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Source: Navarro-Intera (2014)

Milk Shake

Well ER-5-5
TD 2758 m TD 3313 m (1,087 f)
Northwest (905 ) Southeast
UE-5k (projected)
TD 5267 m (1,728 f)
- /Ground surface
1,000 — | 3,300
1
: 5 Re
1
; AA 3,100
1
:
900 — ; AA
:
1
1

Elevation (m)

Cavity radius is calculated using the maximum of the announced

yield range in DOE/NV-209 (2015) and the equation in Pawloski (1999)
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Milk Shake Test
Refined
Conceptual Model

« Lava Flow Aquifer not
acting like a fractured rock
aquifer as contaminant
transport significantly less

» Gaseous phase transport
Important in the near field
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Takeaway Messages

« Scientific understanding of nature is constantly evolving

» Groundwater characterization strategy addresses this
through the periodic evaluation of monitoring data against
models

* Long-term monitoring is the foundation of closure, not the
end point

Management -1 ¢ 1. IV -
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