Stockpile Stewardship

Principal Underground Laboratory for Subcritical Experimentation (PULSE)

The U1h hoist at PULSE.

One-of-a-kind Facility

As the civilian steward of the nation's nuclear weapons complex, the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) is responsible for the safety and reliability of the nation's nuclear arsenal.

A signature component of this effort is PULSE, the Principal Underground Laboratory for Subcritical Experimentation (formerly the U1a Complex) at the Nevada National Security Site (NNSS).

At PULSE, scientists conduct subcritical and physics experiments used in the NNSA's Stockpile Stewardship Program (SSP), to obtain technical information about the U.S. nuclear weapons stockpile to ensure its safety and reliability now, and in the future.

It is the only place in the nation where subcritical experiments using plutonium in weapons-relevant quantities can be conducted.

Stockpile Stewardship: A Brief History

When the NNSS was established in 1951, then known as the Nevada Test Site, it provided a base for a nascent U.S. nuclear weapons program. The Site served as the location for 100 atmospheric and 828 underground nuclear weapons tests before full-scale testing ended with a moratorium in 1992.

Shortly thereafter, the DOE's Defense Programs Office created the SSP to certify the safety and reliability of the nation's nuclear stockpile in the absence of full-scale nuclear testing.

As a result, the SSP conducts a wide variety of physics experiments, coupled with scientific analysis and computing, to obtain data relevant to nuclear warhead performance. The experiments are necessary to track changes as components within a warhead age or are replaced with newly manufactured components through the Stockpile Life Extension and modernization process. Data from these experiments and advanced computer modeling allow scientists and engineers to develop a better understanding of the dynamic properties of aging or replaced components and ensure confidence in the current stockpile.

Subcritical Experiments

Nearly 1,000 feet underground in PULSE - a secure, protected and environmentally controlled laboratory - physics experiments use chemical high explosives to generate extreme

Zero room instrumentation setup for a subcritical experiment includes high bandwidth coaxial signal cables, optical fibers, instrumentation for imaging radiographs and time-resolved capture of surface motion.
pressures that are applied to special nuclear materials. In contrast to full-scale testing, what makes the experiments subcritical is that the configuration and quantities of explosives and weaponsrelevant quantities of plutonium do not allow a self-sustaining nuclear chain reaction, or criticality, to occur.

Originally, subcritical experiments were conducted in single-use alcoves mined into the walls or in vertical boreholes in the floor of PULSE. Today, the experiments are conducted in a mined space known as a "zero room." Experiments in the zero room are contained within a robust confinement vessel which prevents the release of radiological material and allows the room to be used again in future experiments. PULSE is also in close proximity to the Device Assembly Facility at the NNSS, enabling efficient and flexible experimental component assembly in a controlled environment.

